CSE 114A: Fall 2021

Introduction to Functional
Programming

Lambda Calculus

Owen Arden
UC Santa Cruz

Based on course materials developed by Ranjit Jhala

Your favorite language

e Probably has lots of features:

Assignment (x = x + 1)
Booleans, integers, characters, strings,...

Conditionals
Loops, return, break, continue

Functions

Recursion

References / pointers
Objects and classes
Inheritance

... and more

Your favorite language

Which ones can we do without?
What is the smallest universal language?

What is computable?

e Prior to 1930s

- Informal notion of an effectively calculable
function:

172
325%%12

231
22

4

72

&4
b1

One that can be computed by a human

with pen and paper, following an algorithm

What is computable?

e 1936: Formalization

Alan Turing: Turing machines

tolo|olojofal1/B|o|0;

What is computable?

e 1936: Formalization

Alonzo Church: lambda calculus

The Next 700 Languages

e Big impact on language design!

Whatever the next 700 languages
turn out to be, they will surely be
variants of lambda calculus.

Peter Landin, 1966

Your favorite language

e Probably has lots of features:

Assignment (x = x + 1)
Booleans, integers, characters, strings,...

Conditionals
Loops, return, break, continue

Functions

Recursion

References / pointers
Objects and classes
Inheritance

... and more

The Lambda Calculus

e Features
- Functions

- (that’s it)

The Lambda Calculus

e Seriously...

b))

The only thing you can do is:
Define a function

Call a function

10

Describing a Programming Language

e Syntax
- What do programs look like?
e Semantics
- What do programs mean?
- Operational semantics:
« How do programs execute step-by-step?

11

Syntax: What programs look like

Programs are expressions e (also called A-terms)

Variable: x, y, z

e Abstraction (aka nameless function definition):
- \x -> e “for any x, compute e”
- x is the formal parameter, e is the body

o Application (aka function call):

- el e2 “apply el to e2”

- e1is the function, e2 is the argument

12

Examples

-- The 1identity function ("for any x compute x")
\X -> X

-- A function that returns the 1identity function
\x -> (\y ->y)

-- A function that applies its argument to
-- the 1identity function
\f -> f (\x -> x)

13

QUIZ: Lambda syntax

Which of the following terms are syntactically incorrect? *

[=] i =]
Hy

O A\\X->x)->y

(O B.\x->xx

(O C.\xx->x(yx)
(O AandC

(O All of the above

http://tiny.cc/cse116-lambda-ind

14

QUIZ: Lambda syntax

Which of the following terms are syntactically incorrect? *
O A\(\x->x)->y
O B. \x > Xx X

(O C.\xx->x(yx)

(O AandC

(O All of the above

http://tiny.cc/cse116-lambda-grp

15

Examples

-- The 1identity function ("for any x compute x")
\X -> X

-- A function that returns the 1identity function
\x -> (\y ->y)

-- A function that applies its argument to

-- the 1identity function
\f -> f (\x -> x)

 How do | define a function with two arguments?
e e.g. a function that takes x and y and returns y

16

Examples

-- A function that returns the identity function
\x => (\y ->y)

OR: a function that takes two arguments
and returns the second one!

« How do | define a function with two arguments?
e e.g. a function that takes x and y and returns y

17

Examples

 How do | apply a function to two arguments?
- e.g. apply \x -> (\y -> y) to apple and banana?

-- first apply to apple, then apply the result to banana

(((\x -> (\y ->y)) apple) banana)

18

Syntactic Sugar

o Convenient notation used as a shorthand for valid
syntax

instead of we write
\ X -> (\y -> (\z ->e)) \x ->\y ->\z -> e
\X ->\y ->\z -> e \ Xy z -> e
(((el e2) e3) ed) el e2 e3 e4d
\ Xy ->y -- A function that that takes two arguments

-- and returns the second one...

(\X y -> y) apple banana -- ... applied to two arguments

19

Semantics: What programs mean

e How do | “run” or “execute” a A-term?

e Think of middle-school algebra:

-- Simplify expression:
(x + 2)*(3*x - 1)

p??

o Execute = rewrite step-by-step following simple rules
until no more rules apply

20

Rewrite rules of lambda calculus

1. a-step (aka renaming formals)
2. B-step (aka function call)

But first we have to talk about scope

21

Semantics: Scope of a Variable

e The part of a program where a variable is visible

e In the expression \x -> e
- X is the newly introduced variable
- e is the scope of x

- any occurrence of x in \x -> e is bound (by
the binder \x)

22

Semantics: Scope of a Variable

e For example, x is bound in:

\X -> X
\x -> (\y -> x)

e An occurrence of x in e is free if it’s not bound by an
enclosing abstraction

e For example, x is free in:

X Yy -- no binders at all!
\y -> Xy -- no \x binder
(\x ->\y ->y) X -- x 1s outside the scope

-- of the \x binder;
-- 1ntuition: 1t's not "the same" x

23

QUIZ: Variable scope

In the expression (\x -> x) x, is x bound or free? *

(O A.bound

(O B.free

(O c.first occurrence is bound, second is free
O D. first occurrence is bound, second and third are free

O E. first two occurrences are bound, third is free

http://tiny.cc/cse116-scope-ind

24

QUIZ: Variable scope

In the expression (\x -> x) x, is x bound or free? *

(O A.bound

(O B.free

(O c.first occurrence is bound, second is free
O D. first occurrence is bound, second and third are free

O E. first two occurrences are bound, third is free

http://tiny.cc/cse116-scope-grp

25

Free Variables

e An variable x is free in e if there exists a free
occurrence of X in e

 We can formally define the set of all free variables in
a term like so:

FV(x) = ???
FV(\x -> e) = ???
FV(el e2) = ???

26

Free Variables

e An variable x is free in e if there exists a free
occurrence of X in e

 We can formally define the set of all free variables in
a term like so:

FV(x) = {X}
FV(\x -> e) = FV(e) \ {x}
FV(el e2) = FV(el) U FV(e2)

27

Closed Expressions

e |If e has no free variables it is said to be closed

e Closed expressions are also called combinators

- Q: What is the shortest closed expression?

28

Closed Expressions

e |If e has no free variables it is said to be closed

e Closed expressions are also called combinators

- Q: What is the shortest closed expression?

- A \X -> X

29

Rewrite rules of lambda calculus

1. a-step (aka renaming formals)

2. B-step (aka function call)

30

Semantics: B-Reduction

(\x -> el) e2 =b> el[x := e2]

where e1[x := e2] means “e1 with all free occurrences
of x replaced with e2”

« Computation by search-and-replace:

e |f you see an abstraction applied to an argument,
take the body of the abstraction and replace all free

occurrences of the formal by that argument

e Wesay that (\x -> el) e2 B-stepstoel[x := e2]

31

Examples

(\x -> x) apple
=b> apple

Is this right? Ask Elsa!

(\f -> £ (\x -> x)) (give apple)
=b> ???

32

http://goto.ucsd.edu:8095/index.html#?demo=permalink/1554356691_3809.lc

Examples

(\x -> x) apple
=b> apple

Is this right? Ask Elsa!

(\f -> £ (\x -> x)) (give apple)
=b> give apple (\x -> Xx)

33

goto.ucsd.edu:8095/index.html%23?demo=permalink/1554356691_3809.lc

QUIZ: B-Reduction 1

(\x -> (\y ->y)) apple =b> ??? *

(O A.apple

[m] 5= [m]
[=]FL

http://tiny.cc/cse116-betal-ind

(O B.\y->apple

(O C.\x->apple
O D.\y->y

O E\x->y

34

QUIZ: B-Reduction 1

(\x-> (\y ->y)) apple =b> 77?7 *
(O A.apple

(O B.\y->apple

(O C.\x->apple

O D.\y->y El
L

O E\x->y

hittp://tiny.cc/cse116-betal-gr

35

http://tiny.cc/cmps112-beta1-grp

QUIZ: B-Reduction 2

(\x -> x (\x -> x)) apple =b> ??? *
(O A.apple (\x->x)

(O B. apple (\apple -> apple)

(O C.apple (\x->apple)

(O D.apple

O E.\x->x

http://tiny.cc/cse116-beta2-ind

36

QUIZ: B-Reduction 2

(\x -> x (\x -> x)) apple =b> ??? *

(O A.apple (\x->x)
i
(O B. apple (\apple -> apple) E E
o |

(O cC. apple (\x -> apple)
O D. apple E
O E.\x->x

http://tiny.cc/cse116-beta2-grp

37

A Tricky One

(\x -> (\y ->x)) vy
=b> \y -> vy
Is this right?

Problem: the free y in the argument has
been captured by \y!

Solution: make sure that all free variables of the
argument are different from the binders in the body.

38

Capture-Avoiding Substitution

« We have to fix our definition of B-reduction:
(\x -> el) e2 =b> el[x := e2]

where e1[x := e2] means “et-withatfree-eceurrences
of x-replaced-with-e2”

- e1 with all free occurrences of x replaced

with e2, as long as no free variables of e2 get
captured

- undefined otherwise

39

Capture-Avoiding Substitution

Formally:

X[x := e] = e

y[x := e] =y -- assuming x /=y
(el e2)[x := e] = (el[x := e]) (e2[x := e])
(\x -> el)[x := e] = \X -> el -- why just el ?

(\y -> el)[x := e]
| not (y in FV(e)) = \y -> el[x := e]
| otherwise undefined -- but what then???

40

Rewrite rules of lambda calculus

1. a-step (aka renaming formals)

2. B-step (aka function call)

41

Semantics: a-Reduction

\ X -> e =a> \y -> e[x :
where not (y in FV(e))

y]

« We can rename a formal parameter and replace all its
occurrences in the body

« Wesaythat (\x -> e) a-stepsto (\y -> e[x :=y])

42

Semantics: a-Reduction

\x ->e =a> \y -> e[x :=y]
where not (y in FV(e))
e Example:
\X -> X =a> \y ->y =a>

o All these expressions are a-equivalent

\z -> z

43

Example

What’s wrong with these?

-- (A)
\f -> f x =a>

-- (B)
(\x ->\y ->y)y

-- (C)
\ X =>\y -> Xy

\X -> X X

=a>

a> (\x ->\z -> z) z

\apple -> \orange -> apple orange

44

The Tricky One

(\x -> (\y -> x)) vy

=a> ???

To avoid getting confused, you can always rename
formals, so that different variables have different

names!

45

The Tricky One

(\x -> (\y ->x))y
=a> (\x -> (\z -> x)) vy
=b> \z -> vy

To avoid getting confused, you can always rename
formals, so that different variables have different

names!

46

Normal Forms

A redex is a A-term of the form
(\x -> el) e2

A A-term is in normal form if it contains no redexes.

47

QUIZ: Normal form

Which of the following terms are not in normal form ? *

O Ax
O B.xy
O C.(x=>xy
O D.x(\y->y)

() E.CandD

http://tiny.cc/cse116-norm-ind

48

QUIZ: Normal form

Which of the following terms are not in normal form ? *

O A.x
(O B.xy
O C.(x=>xy
O D.x(\y->y)

() E.CandD

http://tiny.cc/cse116-norm-grp

49

http://tiny.cc/cmps112-norm-grp

Semantics: Evaluation

e A A-term e evaluates to e’ if

1. There is a sequence of stops

e =?>e 1l =?> ... =2>e N =2 ¢’
where each =?> is either =a> or =b> and N >= 0

2. e’ isin normal form

50

Example of evaluation

(\x -> x) apple
=b> apple

(\f -> £ (\x -> x)) (\x -> Xx)

=?> ???

(\x -> x x) (\x -> x)

=?> ??7?

51

Example of evaluation

(\x -> x) apple
=b> apple

(\f -> f (\x -> x)) (\x -> x)
=b> (\x -> x) (\x -> X)
=b> \Xx -> X

(\x -> x x) (\x -> x)

=?> ??°?

52

Example of evaluation

(\x -> x) apple
=b> apple

(\f -> f (\x -> x)) (\x -> x)
=b> (\x -> x) (\x -> X)
=b> \Xx -> X

(\x -> x x) (\x -> x)
=b> (\x -> x) (\x -> Xx)
=b> \X -> X

53

Elsa shortcuts

e Named A-terms

let ID = \x -> X -- abbreviation for \x -> x

e To substitute a name with its definition, use
a =d> step:

ID apple
=d> (\x -> x) apple -- expand definition
=b> apple -- beta-reduce

54

Elsa shortcuts

e Evaluation
- e1 =*> e2: el reduces to e2 in 0 or more steps
« where each step is =a>, =b>, or =d>
- e1 =~> e2: el evaluates to e2

 What is the difference?

95

Non-Terminating Evaluation

(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> X X)

e Oh no... we can write programs that loop back to
themselves

« And never reduce to normal form!

e This combinator is called Q

56

Non-Terminating Evaluation

 What if we pass Q as an argument to another
function?

let OMEGA = (\x -> x x) (\x -> x x)

(\x -> \y ->y) OMEGA

e Does this reduce to a normal form? Try it at home!

o7

Programming in A-calculus

e Real languages have lots of features

Booleans

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

e Let’s see how to encode all of these features with
the A-calculus.

58

A-calculus: Booleans

 How can we encode Boolean values (TRUE and FALSE)
as functions?

o Well, what do we do with a Boolean b?

- We make a binary choice

if b then el else e2

59

Booleans: API

e We need to define three functions

let TRUE = ???
let FALSE = ???
let ITE = \bxy ->??? --1f b then x else y

such that

ITE TRUE apple banana =~> apple
ITE FALSE apple banana =~> banana

(Here, let NAME = e means NAME is an abbreviation for e)

60

Booleans: Implementation

let TRUE
let FALSE
let ITE

\ X y -> X
\ X'y ->y
\b Xy ->b xy

-- Returns first argument

-- Returns second argument
-- Applies cond. to branches
-- (redundant, but

-- 1improves readability)

61

Example: Branches step-by-step

eval ite true:
ITE TRUE el e2
=d> (\b xy -> b X

=b>
=b>
=b>
=d>
=b>
=b> el

(\x y -> TRUE x

(\y -> TRUE el

TRUE el

(\Xx y -> x) el
(\y -> el)

y) TRUE el e2

y)

y)
e2

e2
e2

el e2
e2

expand def ITE
beta-step
beta-step
expand def TRUE
beta-step
beta-step

62

Example: Branches step-by-step

e Now you try it!
e Can you fill in the blanks to make it happen?

- http://goto.ucsd.edu:8095/index.html#?demo=ite.lc

eval ite false:
ITE FALSE el e2

-- f1ll the steps 1in!

=b> e2

63

Example: Branches step-by-step

eval ite false:
ITE FALSE el e2
=d> (\b xy -> b

=b>
=b>
=b>
=d>
=b>
=b> e2

(\x y -> FALSE x v)
(\y -> FALSE el y)

FALSE el e2
(\x vy ->y) el e2
(\y ->y) e2

X y) FALSE el e2

el e2
e2

expand def ITE
beta-step
beta-step
expand def TRUE
beta-step
beta-step

64

Boolean operators

 Now that we have ITE it’s easy to define other
Boolean operators:

let NOT = \b -> 2??
let AND = \bl b2 -> ???
let OR = \bl b2 -> ???

65

Boolean operators

 Now that we have ITE it’s easy to define other
Boolean operators:

let NOT = \b -> ITE b FALSE TRUE
let AND = \bl b2 -> ITE bl b2 FALSE
let OR = \bl b2 -> ITE bl TRUE b2

66

Boolean operators

 Now that we have ITE it’s easy to define other
Boolean operators:

let NOT

\b -> b FALSE TRUE

let AND \bl b2 -> bl b2 FALSE

let OR = \bl b2 -> bl TRUE b2
- (since ITE is redundant)

- Which definition to do you prefer and why?

67

Programming in A-calculus

e Real languages have lots of features

Booleans [done]

Records (structs, tuples)

Numbers

Functions [we got those]

Recursion

68

A-calculus: Records

e Let’s start with records with two fields (aka pairs)?

e Well, what do we do with a pair?

1.Pack two items into a pair, then
2.Get first item, or

3.Get second item.

69

Pairs: API

e We need to define three functions

let PAIR = \x y -> ??? -- Make a pair with x and y
--{ fst : x, snd : y }
let FST = \p -> ??? -- Return first element
-- p.fst
let SND = \p -> ??? -- Return second element
-- p.snd
such that
FST (PAIR apple banana) =~> apple
SND (PAIR apple banana) =~> banana

70

Pairs: Implementation

e A pair of x and y is just something that lets you pick
between x and y! (l.e. a function that takes a boolean
and returns either x or y)

let PAIR = \x y -> (\b -> ITE b x y)
let FST = \p -> p TRUE -- call w/ TRUE, get 1st value
let SND = \p -> p FALSE -- call w/ FALSE, get 2nd value

71

Exercise: Triples?

« How can we implement a record that
contains three values?

let TRIPLE = \x y z -> ???
let FST3 = \t -> ???
let SND3 = \t -> ???
let TRD3 = \t -> ???

72

Exercise: Triples?

« How can we implement a record that
contains three values?

let TRIPLE = \x y z -> PAIR x (PAIR y z)
let FST3 = \t -> FST t

let SND3 = \t -> FST (SND t)

let TRD3 = \t -> SND (SND t)

73

Programming in A-calculus

e Real languages have lots of features

- Booleans [done]

Records (structs, tuples) [done]

Numbers

Functions [we got those]

- Recursion

A-calculus: Numbers

e Let’s start with natural numbers (0, 1, 2, ...)

« What do we do with natural numbers?

1. Count: 0, inc
2. Arithmetic: dec, +, -, *

3. Comparisons: ==, <=, etc

75

Natural Numbers: API

e We need to define:

— Afamily of numerals: ZERO, ONE, TWO, THREE, ...
— Arithmetic functions: INC,DEC, ADD, SUB, MULT
— Comparisons: IS ZERO, EQ

Such that they respect all regular laws of arithmetic, e.g.

IS _ZERO ZERO =~> TRUE
IS ZERO (INC ZERO) =~> FALSE
INC ONE =~> TWO

76

Pairs: Implementation

e Church numerals: a number N is encoded as a
combinator that calls a function on an
argument N times

let
let
let
let
let
let

ONE
TWO
THREE
FOUR
FIVE
SIX

\f
\f
\f
\f
\f
\f

X X X X X X

f X

(f x)

(f (f x))

(f (f (f x)))

(f (f (f (f x))))

(f (f (f (f (f x)))))

+ -h -h -h -

77

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ? *

(O A:let ZERO = \f x -> x
(O B:letZERO = \f x -> f
(O C:letZERO =\fx->fx
(O D:let ZERO = \x -> x

(O E: None of the above

http://tiny.cc/cse116-church-ind

78

QUIZ: Church Numerals

Which of these is a valid encoding of ZERO ? *

(O A:let ZERO = \f x -> x
(O B:letZERO = \f x -> f
(O C:letZERO =\fx->fx
(O D:let ZERO = \x -> x

(O E: None of the above

http://tiny.cc/cse116-church-grp

79

A-calculus: Increment

-- Call f on x one more time than "n does
let INC = \n -> (\f x -> ???)

e Example

eval inc_zero :
INC ZERO
=d> (\n £ x -> f (n ¥ x)) ZERO
=b> \f x -> ¥ (ZERO f x)
=*> \f x -> f X
=d> ONE

80

QUIZ: ADD

How shall we implement ADD? *

(O A.letADD=\nm->nINCm
(O B.letADD=\nm->INCnm
(O C.letADD=\nm->nmINC

(O D.let ADD =\nm->n (m INC)

[=]::

http://tiny.cc/cse116-add-ind

(O E.let ADD =\nm->n (INC m)

81

QUIZ: ADD

How shall we implement ADD? *

(O A.letADD=\nm->nINCm
(O B.letADD=\nm->INCnm
(O C.letADD=\nm->nmINC
(O D.let ADD =\nm->n (m INC)

(O E.let ADD =\nm->n (INC m)

http://tiny.cc/cse116-add-grp

82

A-calculus: Addition

-- Call f on "x exactly n + m times
let ADD = \n m -> n INC m

e Example

eval add one_zero :
ADD ONE ZERO
=~> ONE

83

QUIZ: MULT

How shall we implement MULT? *

(O A.letMULT =\nm->n ADD m

(O B.let MULT =\n m->n (ADD m) ZERO
(O C.let MULT =\nm ->m (ADD n) ZERO
(O D.let MULT =\n m->n (ADD m ZERO)

(O E.let MULT =\nm -> (n ADD m) ZERO

http://tiny.cc/cse116-mult-ind

84

QUIZ: MULT

How shall we implement MULT? *

(O A.letMULT =\nm->n ADD m
(O B.let MULT =\n m->n (ADD m) ZERO

(O C.let MULT =\nm ->m (ADD n) ZERO

(O D.let MULT =\n m->n (ADD m ZERO) E
(O E.let MULT =\nm -> (n ADD m) ZERO

http://tiny.cc/cse116-mult-grp

85

A-calculus: Multiplication

-- Call f on "x exactly n * m times
let MULT = \n m -> n (ADD m) ZERO

e Example

eval two _times one :
MULT TWO ONE
=~> TWO

86

Programming in A-calculus

e Real languages have lots of features

- Booleans [done]

Records (structs, tuples) [done]

Numbers [done]

Functions [we got those]

- Recursion

A-calculus: Recursion

e | want to write a function that sums up natural
numbers up to n:

\n -> ... -- 1+ 2+ ... +n

88

QUIZ: SUM

|s this a correct implementation of SUM? *

[m]
[=]

http://tiny.cc/cse116-sum-ind

let SUM = \n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n)))

A. Yes

B. No

89

QUIZ: SUM

|s this a correct implementation of SUM? *

[=]

let SUM = \n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n)))

A. Yes

B. No

http://tiny.cc/cse116-sum-grp

90

A-calculus: Recursion

« No! Named terms in Elsa are just syntactic sugar

e To translate an Elsa term to A-calculus: replace each name
with its definition

\n -> ITE (ISZ n)
ZERO
(ADD n (SUM (DEC n)))

e Recursion: Inside this function | want to call the same
function on DEC n

« Looks like we can’t do recursion, because it requires being
able to refer to functions by name, but in A-calculus
functions are anonymous.

e Right?

91

A-calculus: Recursion

e Think again!

e Recursion: lnside-thisfunctionlwanttocall-the
same-functionon DECh
- |Inside this function | want to call a function on DEC n
- And BTV, | want it to be the same function

e Step 1: Pass in the function to call “recursively”

let STEP =
\rec ->
\n -> ITE (ISZ n)
ZERO
(ADD n (rec (DEC n))) -- Call some rec

92

A-calculus: Recursion

o Step 1: Pass in the function to call “recursively”

let STEP =
\rec ->
\n -> ITE (ISZ n)
ZERO
(ADD n (rec (DEC n))) -- Call some rec

e Step 2: Do something clever to step, so that the
function passed as rec itself becomes

\n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))

93

A-calculus: Fixpoint Combinator

e Wanted: a combinator FIX such
that FIX STEP calls STEP with itself as the first
argument:

FIX STEP
=*> STEP (FIX STEP)

(In math: a fixpoint of a function f(x) is a point x, such that f(x) = x)

e« Once we have it, we can define:
let SUM = FIX STEP

« Then by property of FIX we have:
SUM =*> STEP SUM -- (1)

94

A-calculus: Fixpoint Combinator

eval sum_one:

SUM

ONE
STEP SUM ONE -- (1)
(\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ONE

(\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ONE
-- M2 the magic happened!
ITE (ISZ ONE) ZERO (ADD ONE (SUM (DEC ONE)))

ADD ONE (SUM ZERO) -- def of ISZ, ITE, DEC,
ADD ONE (STEP SUM ZERO) -- (1)
ADD ONE
((\rec n -> ITE (ISZ n) ZERO (ADD n (rec (DEC n)))) SUM ZERO)
ADD ONE ((\n -> ITE (ISZ n) ZERO (ADD n (SUM (DEC n)))) ZERO)

ADD ONE (ITE (ISZ ZERO) ZERO (ADD ZERO (SUM (DEC ZERO))))
ADD ONE ZERO
ONE

95

A-calculus: Fixpoint Combinator

« So how do we define FIX?

« Remember Q? It replicates itself!

(\x -> x x) (\x -> x x)
=b> (\x -> x x) (\x -> X X)

 We need something similar but more involved.

96

A-calculus: Fixpoint Combinator

« The Y combinator discovered by Haskell Curry:

let FIX = \stp -> (\x -> stp (x x)) (\x -> stp (x x))

« How does it work?

eval fix_ step:
FIX STEP
=d> (\stp -> (\x -> stp (x x)) (\x -> stp (x x))) STEP
=b> (\x -> STEP (x x)) (\x -> STEP (x x))
=b> STEP ((\x -> STEP (x x)) (\x -> STEP (x x)))
- ANAAAAAAAN this is FIX STEP AMAAAAAAAAN

97

Programming in A-calculus

e Real languages have lots of features

- Booleans [done]

Records (structs, tuples) [done]

Numbers [done]

- Functions [we got those]

Recursion [done]

Next time: Intro to Haskell

99

